This vignette demonstrates how to estimate a traditional linear PLS-SEM using continuous indicators.

Theory of Planned Behavior (Continuous Indicators)

tpb <- ' 
# Outer Model (Based on Hagger et al., 2007)
  ATT =~ att1 + att2 + att3 + att4 + att5
  SN =~ sn1 + sn2
  PBC =~ pbc1 + pbc2 + pbc3
  INT =~ int1 + int2 + int3
  BEH =~ b1 + b2

# Inner Model (Based on Steinmetz et al., 2011)
  INT ~ ATT + SN + PBC
  BEH ~ INT + PBC 
'
fit_tpb <- pls(
  tpb,
  data      = modsem::TPB,
  bootstrap = TRUE,
  sample    = 500
)
summary(fit_tpb)
#> plssem (0.1.0) ended normally after 3 iterations
#> 
#>   Estimator                                       PLSc
#>   Link                                          LINEAR
#>                                                       
#>   Number of observations                          2000
#>   Number of iterations                               3
#>   Number of latent variables                         5
#>   Number of observed variables                      15
#> 
#> R-squared (indicators):
#>   att1                                           0.847
#>   att2                                           0.825
#>   att3                                           0.805
#>   att4                                           0.745
#>   att5                                           0.845
#>   sn1                                            0.817
#>   sn2                                            0.863
#>   pbc1                                           0.856
#>   pbc2                                           0.859
#>   pbc3                                           0.787
#>   int1                                           0.816
#>   int2                                           0.827
#>   int3                                           0.742
#>   b1                                             0.762
#>   b2                                             0.821
#> 
#> R-squared (latents):
#>   INT                                            0.367
#>   BEH                                            0.210
#> 
#> Latent Variables:
#>                  Estimate  Std.Error  z.value  P(>|z|)
#>   ATT =~        
#>     att1            0.921      0.013   71.473    0.000
#>     att2            0.908      0.014   63.104    0.000
#>     att3            0.897      0.017   51.518    0.000
#>     att4            0.863      0.019   46.190    0.000
#>     att5            0.919      0.015   61.775    0.000
#>   SN =~         
#>     sn1             0.904      0.012   72.699    0.000
#>     sn2             0.929      0.012   77.041    0.000
#>   PBC =~        
#>     pbc1            0.925      0.011   82.157    0.000
#>     pbc2            0.927      0.012   79.213    0.000
#>     pbc3            0.887      0.013   69.598    0.000
#>   INT =~        
#>     int1            0.903      0.011   81.911    0.000
#>     int2            0.909      0.012   78.758    0.000
#>     int3            0.861      0.013   68.127    0.000
#>   BEH =~        
#>     b1              0.873      0.015   58.618    0.000
#>     b2              0.906      0.014   63.946    0.000
#> 
#> Regressions:
#>                  Estimate  Std.Error  z.value  P(>|z|)
#>   INT ~         
#>     ATT             0.243      0.030    8.099    0.000
#>     SN              0.201      0.030    6.712    0.000
#>     PBC             0.240      0.033    7.337    0.000
#>   BEH ~         
#>     PBC             0.308      0.025   12.263    0.000
#>     INT             0.210      0.027    7.792    0.000
#> 
#> Covariances:
#>                  Estimate  Std.Error  z.value  P(>|z|)
#>   ATT ~~        
#>     SN              0.633      0.014   44.370    0.000
#>     PBC             0.692      0.012   55.931    0.000
#>   SN ~~         
#>     PBC             0.696      0.014   51.437    0.000
#> 
#> Variances:
#>                  Estimate  Std.Error  z.value  P(>|z|)
#>     ATT             1.000                             
#>     SN              1.000                             
#>     PBC             1.000                             
#>    .INT             0.633      0.018   34.319    0.000
#>    .BEH             0.790      0.019   40.930    0.000
#>    .att1            0.153      0.024    6.443    0.000
#>    .att2            0.175      0.026    6.714    0.000
#>    .att3            0.195      0.031    6.228    0.000
#>    .att4            0.255      0.032    7.902    0.000
#>    .att5            0.155      0.027    5.683    0.000
#>    .sn1             0.183      0.022    8.143    0.000
#>    .sn2             0.137      0.022    6.083    0.000
#>    .pbc1            0.144      0.021    6.910    0.000
#>    .pbc2            0.141      0.022    6.512    0.000
#>    .pbc3            0.213      0.023    9.413    0.000
#>    .int1            0.184      0.020    9.245    0.000
#>    .int2            0.173      0.021    8.253    0.000
#>    .int3            0.258      0.022   11.885    0.000
#>    .b1              0.238      0.026    9.138    0.000
#>    .b2              0.179      0.026    6.948    0.000